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| . IN TURBULENT MOTION*
(In the light of the Prandtl and Taylor theories)

By C. Ferrari

SUMMARY

‘

The author studies the problem of the transport of
vorticity or of momentum in the light of the Taylor and
Prandtl theories which he briefly reviews., He shows how
the formulas of Prandtl could bde brought into agreement
with experimental results in those cases where they agree
with the principle of statistic similitude of Karman, and
particularly in the problem of the distribution of veloe-
ity and temperature in the wake of a heated cylindrical
obstacle. He shows that when the formulas are extended to
two-dimensional motion with streamlines whose curvature is
not zero, they lead to unsatisfactory results and that in
this case the formulas differ completely -from those de-~
- rived from the prineciple of similitude when the latter is
applicd either to the configuration of disturbed flow or
to the distribution functions of the turbulent velocities.
He then examines the relations of this prroblem of trans-
rort of motion with the theory of Mattioli, which appears
susceptible of some observations. After pointing out the
difficulty of obtaining a satisfactory theory of turbu-
lence based ovn the concept of transport and deduced by the
methods of classical mechanics, he indicates the reasons
therefor and shows finally how the problem may find a so-
lution by applying the methods of statistical mechanics
according to the theory of Gebelein.

ls The essential defining characteristics of the tur-
bulent motion of a fluid is the well<known irregular fluc-
' tuatibﬂéf‘béﬁh in magnitude and direction, of the velocity

*"La Teoria della Turbolenza ed il Trasporto della Quantita
di Moto e della Vorticita." L'Aerotecnica, vol. XV,
nos. 11-12, November-December 1935, pp. 1037-1056.
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at each point, corresponding to an energetic mixing of the
mass whereby a fluid particle may, in the course of its
motion, occupy any position whatever in the field. The
fluctuations. of the modulus and argument of tHe velocity
vector about their mean value, though both irregular, are
not, however, independent. There exists between them a
statistical correlation, in consequence of which the mean
time value of the product of two velocity components along
any two perpendicular directions is different from zecro.

~ There result upon each element of surface immersed in the

fluid virtual stresses perfectly analogous to the viscous
stresses produced by thermal molecular agitation. To char-
acterize this turbulent agitation of the mass Prandtl (réf-
erence 1) and Taylor, (reference 2) have independently in-
troduced the concept of mixing length or "Mischungsweg",
denoted by 1, which is gquite analogous to the molecular
mean free path A considered in the kinetic gas theory,
and which may therefore be defined as the path normal to
the 1line§ of flow which the particles can trace out and
still maintain their individuality; that is, without as-
suming the physical characteristics of the medium in which
they are immersod. But whereas Prandtl and his collabor-
ators assume that throughout the path 1 each fluid parti-
cle maintains its momentum, Taylor objects that the in-
stantaneous differences of pressure may cause the velocity
of the displaced particle to vary and that therefore it is
more logical to assume that it is the vorticity, upon which
the instantaneous local pressure distributién has no ef-
fect, that is maintained constant.

2, In order to understand these two concepts more
clearly, let us limit our considerations to. two-dimensional
fields of motion in which the flow lines are exactly or
approximately straight lines parallel to the X axis, along
which the characteristics of the motion may be assumed con-
stant. If u' and +¥' are the two components of the ve-
locity due to the turbulent agitation, the transport of
the momentum across an element dx 1is equal to

Tgy 4% = = p utv! dx (1)
where wu'v'! dehotes the mean time value of the product of
u? and v'; the increment of momentum per unit volume com-
municated to the fluid layer of thickness dy 1is there~
fore

aT g e '
= = : ' (2)
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and therefore if. the mean. motion takes place in-the direc-
- tion of the X axis with a pressure gradient op/dx, the
equatlon of motion is “'_ i R

?:.a.E.:....__ t ‘ »
pox " ay (u vk) | . (3?

On the other hand, considering the motion from the
Lagrangian point of view, the fluctuations in velocity
appear as a consequence of the transfer of fluid particles
from layer to .layer, so that if ! is the distance, at a
given 11stant between the layer from which the particle
comes to that which it occupies, and if it is assumed with
Prandtl that within the distance 1' the velocity remains
constant, then

ut = - 1! &Y (4)

wanere U denotes the velocity of the motion. From (3)
there results '

1 ap d (=5 4u ‘

— — = e  ty ! == 5

p Ox dy {1 dy 4 (5)
Equation (5) has further been transformed by Prandtl

by making the plausible assumption thHat the correlation

between wu' and v'!' and therefore between 1' and v!

is constant over the whole field, so that it is possible

to put
1'v! = /1 /vxe vlz

in which ¢ 1s a constant and 1 the mean square varia-
tion of ', or, according to the definition given above,
the mean "mlxing length.” (Considering next two fluiad par=
ticles which, moving from the layers of height y + 1' and
¥y = 1', meet at the layer of height ¥; they will approach
each other or move away from each other with a relative
velocity 2u' and will therefore induce in the fluid a
velocity +v!' whieh, on: account of the continuvity of the
fiuid mass itgelf, should be of ‘the same order of magni-

tude as u':. that 1s,_ v'té au" and therefore,

Auta L 4y (6)

4y

where ¢, is likewise a constant.
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. By means of (6) eguation (5) is’ transformed into

1ap_ & .oV [av |
p Ox dy {1' dy \dy y} (7

in which ¢, 1is included in 1.

%3, To deduce the increment of momentum communicated
per unit volume to the element of thickness dy under the
hypothesis that not the momentum but the vorticity remains
constant during the transport of the fluid particles,
Taylor considers the eguation of motion of-a perfect fluid
which, under the assumption that the mean -motion is uni-
form and parallel to the direction of the X axis, assumes
the expression

= 2vW "_ (8)

!
=
Qi

N Le)

in which

- 1 /ou av\
2 0y oxy
is the vorticity; and therefore, in the fields of motion
considered above the increment of motion dwe to the tur-
bulent agitation is, according to Tayler

——=f = - 2yt (9)

if @' and v! are the instantaneous values of the os-

cillations of the vorticity and of the component v' of

the velocity. There is then obtained the equation corre-
sponding to (3)

Y S— .
- -—é.g:: 2w v! (31)
p X .

in which the correlation between ®' and +v' 1is brought
about by the same causes that produce that between u!

and v!' in the theory of Prandtl,  On the other hand, if

1' Thas the meaning defined above, then according to Taylor,

and therefore,
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1 A Y. o . oL
__@P_z vipl -y : - (51)
LS Bx dy

oi also, from (6) and the assumption of constant correla-~
tion between v' and 1

}_QP_-_: ‘[‘2
p Ox

a2y o
——5 (71)
ay

au
dy

4. Without entering for the present into the merit

or Justification of the criteria which led to equations

(5) and (5%'), these may simply be discussed, as has been
indicated By Taylor (reference 3) and Fage (reference 4y,
on the basis of a comparison of the results to which they
lead with those deduced from experiment. Now it is known
that in the uniform flow about a flat plate, when 1 is
set equal to ¢y as required from simple considerations

of the homogeneity of the formulas and of dynamic simili-
tude, equation (7) leads immediately to a distribution of
the velocity at the surface of contact of the plate itself,
which fact has been brilliantly confirmed both by the clas-
sical turbulence theory of Karmidn (reference 5) and by the
experimental investigations of Nikuradse (reference 6).
There is, in fact, obtained by double integration of (7)

U=2alogy+ b (8)

and from the tests of Nikuradse,

—————— = 5.5 + 5,75 log ——2—-

in which T, 1is the tangential stress at the plate.

Equation (7'), on the contrary, in the case which we
are examining, does not give any significant result; in

a -
fact, if o S O, then either 1 should be equal to zero,

dx
which case-corresponds to nonturbulent. motion, or %g 0
or, finally, __Q = O, and therefore the velocity at the

dy®
surface of contact of the plate should vary either linear-
1y or parabolically.

Although the example just discussed appears to bear
out the theory of Prandtl, a contrary result is obtained
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if there is considered the phenomenon of turbulent diffu-
sion in the wake behind a cylindrical obstacle with axisg
of symmetry in the direction of the X axis. This problem
has been studied theoretically and experimentally Dby
Schlichting (reference 7), who has found that the velocity
U along the X axis may be expressed by means of the for-
mula

Up = U 172 ( \
Jo___Z _ £ ([ 4=
v x/

where Uy 1is the velocity of the undisturbed stream.

The velocity V along y perpeandicular to x, by
the equation of continuity, is given by

R R CE e

while the mixing length 1| is proportional to =x1/2,

or
1 =ax1/2, ©YNow if the wake is narrow and therefore y 1is
small compared to x, then according to (7) there is ob-
tained the equation of motion:

- ]
u aU_=Q.[f“ av]_zz U FU -, L (o
° ax oy ay] - "F T3 3 (9)

while according to (7!') there is obtained:

BT -
o QU o T 20 L ey WU 4L WAL (g

ox dy® oy oy® 2 dy oy®

Equations (9) and (9') are formally identical, bdbut

the coefficient of turbulent transport resulting from (9)
is double that containcd in (9'); it follows that the dia-
grams of velocity deduced from (9) and from (9') are iden-
tical, but the results will not be identical if the trans-
port coefficient calculated from (9) or (9') is applied to
other problems intimately connected with this one. Let us
consider, for example, the temperature in the wake of the
same obstacle which is assumed to be heated. The equation
of the heat transport is

al._ jl rov oL ,
U, (7, 8y> | (10)
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and by comparing (10) with (9) it is immediately recog-
nized ‘that the latter is satisfied if we put

T=1U (11)
that is, the law of distribution of temperature in the
wake of an obstacle should, according to Prandtl's theory,
coincide with that for the velocity. If, however, (11) is

applied to (10), the latter is not transformed into (91)
and therefore according to the theory of Taylor, the tem-

- perature diagram does not coincide with that for the ve-

locity. For the velocity there is obtained

Eg_;_g_ = (1 - 23/2)2

where Ug is the value of U on the axis of the wake

whose width is 2Y and £ 1is equal to y/v, for the
temperatures

T

3/=2
= £’
c

= ] -

where T, denotes the temperature on the axis.

Now the tests of A, Fage and of Falkner (reference 8),
carried out on two cylindrical heated obstacles of circular
section and lenticular section, respectively, have shown
an excellent agreement between the velocity and tempecra~
ture distribution agreeing with the theory of Taylor, and
they particularly well bring out the difference between
the temperature and velocity diagrams, respectively (fig.
1). In this connection it should, however, be remarked
that the similarity between the distribution diagrams of
the temperature and velocity affirmed by the theory of
Prandtl, has been experimentally confirmed by F. Elias
(reference 9) for the flow about a flat plate. It therec—
fore appears that while the theory of transport of momen-
tum is confirmed by experiments in problems of bound tur-
bulence (at the contact of the solid wall), at least for
the very simple cases considered above, the theory of
transport of vorticity gives better results in the prob-
lems of free turbulence. Taylor and Prandtl attridute
this singular behavior to the fact that in the case of
bound turbulence, as demonstrated by the experiments. of
Tage and Townend (reference 10), the perturbations which
make the particles move from layer to layer are produced
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essentially by vortices arranged so that their axis is
parallel to the wall of the obstacle and along the undis-
turbed stream, so that the phenomenon of turbulent agita-
tion is three~dimensional, whereas in free turbulence the
transport of the fluid particles is due principally to
vortices arranged with their axis normal to the flow line
of the mean motion and to the plane of the motion. 1In the
first case migrations of the particles can take plarve with-
out having the velocity influenced by the differences in
local pressure; at any rate, Taylor observes that the
transport of vorticity is now given not only by 2w v,
but by 2(w'y vv - wgrw'), where 2z is the direction nor-

mal to the plane of the mean motion and w' and ﬁ“y the

component of the oscillation velocity and of the rotation,
respectively, along the 2 and Y axes, From the general
laws of vortex motion of Helmholtz (see Lamb, Hydrodynam-
ics, 4th ed., p. 197), Taylor deduces that the transport
of vorticity in the case of three~dimensional perturba~

. . ., 9z y_ 0z dw,
tions is given by v! Sg-wz + 1 v! S; 5;*, instead of by

aw
v E;g’ where ¢ denotes the initial coordinate =z of
the fluid particle, or the value of 2z whereby the vortic-
ity is considered equal to that corresponding to the mean
motion at the same point., If a fluid element initially
parallel to =z keeps its orientation constant, then obvi-

ously %% = 1, or is always constant, and therefore
v! %% = 0; but if the instantaneous velocity also has a
component along =z, %2 - 1, which represents the defor-

mation of the element defined .above along z itself, it

may assume any values whatever and. therefore v! %g may

be different from zero. Taylor shows that if 1 is suffi-
ciently small, in the special case of flow about a flat
plate, the application of the principle of the transport

of vorticity allows an equation to be obtained that is for-
mally identical with (5), derived from the entirely differ-
ent concept of Prandtl.

5. Taylor's conception is certainly ingenious and
may perhaps give useful results in those more complicated
problems where the other theorems prove powerless. Never-
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theless, it does not appear to the writer that it is neces-~
sary to have recourse to a three-~dimensional theory of tur-
bulence in order to explain the limits of applicadbility of
formulas (7) and (7'), to give reasons for the erroneous
results to which they may lead, and to substitute for

thege other formulas of greater generality.» )

It is interesting to compare the results of the pre-
ceding theories with those that may be deduced by the cor-
rect application of the egquations of Navier, which are nat-

“urally assumed valid not only for the instantaneous motion

but also for the mean motion. Under these conditions,
there is obtained from the equation of projection of the
momentum in the x direction

lagp _ _au . 3w
p ax _ * ax t v oy

in whiech 1 and v are the instantaneous values of the
velocity, or uw=U+a', wv=7V + v'; 1w and .V always
being connected by the eguation of cont1nuity gﬁ + §§ = 0.

There immediately results in place of (3) for the mean mo-
tion

];éi= —r ou' ¢ ou' ou _a_Y.
cor Ty "M T iHRYV Y

But if Jour® =1 %%, it is possible to put u' ='- 1! %g;

v! = a ! %Q in which a may vary in time but is inde-

pendent of ¥,

vr oul - _a d .12 au |ou| |.
oy 2 dy ou |9y ’

and therefore, including as before the single constant a

in 1' _
P__1 5./ auNY 4, au 2 VAY
s8=--1 z%[f" (a‘;}‘)}*”’ 5% * 55[12 (a;r)] - )

If the motion is independent of =x, (1l1) reduces to

- %%ﬁ‘ "2 &y [ (gg>] (12)

-
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which is formally identical with (7) and therefore, under
equal assumptions on the form of 1, 1leads to the same
distribution of velocity., In particular, for the flow
about a flat plate, :

dp

iz = % b =ky

and there is therefore obtained

v _ k
20 = £ U=k lo + D
i =y g v

On the other hand, the temperature distribution law
for the same case is given by

aT _ = 4 ygr dary o 4 2 4U 4T
U g 0 iy \7, v iy ) = iy (1 iy dy (13)

which, by putting
T=D70T

comes out identical with (12) (since %% is zero), and

therefore assures the gsimilitude of the diagrams of the
velocity and temperature distribution in the turbdulent
flow about a flat heated plate.

In the wake of a heated obstacle, however, at a great
distance x downstream, equation (11), with the same de-
gree of approxXximation by which (9) is written, the term

g; { G?l> ] being negligible compared with __ [ <ay/:]’
gives:

2
v. ol =1 o | & /aU 14
° 9x 2 Oy oy (14)
which agrees with (9') resulting from the theory of Taylor,
while the temperature distribution is always given by (10).

6e From what we have said above, it therefore turns
out that the lack of agreement of the experimental results
with those deduced from (7) in the problem of turbulent
diffusion in the wake of a cylindrical obstacle, is not a
consequence of (4) and (6) and therefore of a possible in-
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fluence of the local pressure gradient which, by varying
the quantity of motion of the particles, increases the co~
efficient of heat transport with respect to that of impulse,
as deducoed by Taylor, but of the fact that the equation of -
motion is not (9) dut (14),. S

This conclusion does not, however, yet justify us 4in
deducing any principle of gencral character as regards the
possibility of the application of the Taylor and Prandtl
concepts to the problems of turbulence. In fact, the fun-~
damental relations (4) and (6) whose validity we have just
shown for the cases of the two~dimensional motion consid~
ered, and which in the theory of Prandtl define the con-
stancy of the momentum in the transport of turbulence,
have been deduced by an entirely distinct procedure by
RKarman, and by this method acquire an essentially differ=~
ent significance, which determines also the limits of ap-
plicability.

In 1930 Kdrman had already determined equations (4)
and (6), assuming the condition that the disturbed motion
corresponding to the turbulent agitation of the fluid par-
ticles is statistically similar at all points of the field,
differing from point to point only by the scales of time
and of length., This assumption, as Kirmdn observes, pcr-
fectly corresponds to that which is normally made in the
kinetic theory of gases and which permits the stresses due
to the thermal agitation of the molecules to be simply ex-
pressed by means of local derivatives of the general ve-—
locity of the motion, and of the mean molecular trajectory,
and yields as a consequence the constant correlation between
‘the components of the turbulent oscillation velocity, to
which we have already referred above and which has been
confirmed by the experiments of Wattendorf (referencc 11)
and Kuethe at Pasadena, and by Reéichardt (reference 12) at
Gottingen (fig., 2). 1In this way, under the assumption
that the gencral motion takes place very approximately »
along flow lines parallel to the X axis, there result the
fundamental relations of Xarman,

Jor o, JTEL

dy’ dy

which, being formally identical with those established by
Prandtl, differ substantially by the concept from which
they were derived and by the definition of the length 1, .
which in the theory of Karman, is. given by ' ‘
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. av/ay

Eu

dyz

The meaning of (4) and (6) has been recently general-
ized by Dédébant, Schereschewski, and Wehrle (reference
13), who have shown that the Kirmdn relations may be ob-
tained Dby applying the law of similitude not to the con~
figuration of the velocity field, but only to the law of
distribution of the disturbed velocity; that is, by assum-
ing that the disturbed velocity distridbution functions be-
come identiéal by a suitable change of scale.

It should still be observed that the equation (3!')
leads to the same laws as those derived from (12) by assum-
ing that the fluctuations of the vorticity at each point

are proportional not to é% gg, bu? t? é% 2 gg, and
therefore not to the derivative of the mean rotation but

to the derivative of the displacement.,

7+ TFor the more accurate comprehension of the effec-
tive mcaning of the preceding formulas and of the real pos-
sibility that the concepts explained above offer for a sat-
isfactory solution of the prodblem of turbulence, it is of
great aid to consider the motion along flow lines of non-
zero curvature. For simplicity of treatment and by analo-
gy with what has been done above, we shall suppose that
the mean flow always takes place in a plane and along arcs
of concentric curves. We shall denote the velocity tan-
gent to the circle of radius r by vy and the radial ve-
locity by vyp. The natural extension of the concept of
Prandtl (references 14, 15, and 16), leads to the conclu-
sion that the fluid particles in being transferred from
layer to layer as a consequence of the turbulent agitation,
maintain their velocity moment constant with respect to
the center of rotation -~ that is, vy r = constant = c.
A fluid particle, therefore, which arrives at a layer of
radiug r after transversing a radial distance 1 has
R . . c t ""Vt H
decreased its own velocity by Avy = - -y = - 1,
and since it had initially an excess of velocity 1! ey

the increase in velocity that it has with respect to that
of the layer to which it arrives, becomes
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av v | 1’ a .
j oy - t ._-.....E. ._.t-_..v = Y s .
V t ) .L Adr - + T . .r.dr (Ytr) : (.15)

The mean increment in the momentum communicated to the el-
ement of radial thickness dr and of length r 4 @, is
therefore, :

. . ————— a ' )
acu =‘? dp dr v'pt!? ic (vir)

to.which there corresponds a virtual tangential stress
AP
T
T = —— e e :
P~ ir (V¢ ) (}6)

different from iero on account of the correlation which
in general exists between vipy and v'y, or between v!

and IL'o

r

There is thus obtained the equation of motion in the
mean direction of flow under the assumption that vy 1is
constant along a flow line of the mean motion:

11 4 1 4 1 d
== S (1) = = Ra

o a
— prod [ rt b
p r ar pa ~rar bVt gp ve )1 QA7)

From (17) and (16), however, there follow erroneous
results or results that have not been confirmed by experi-
ments, Karman, in fact, observes that from (16) it would
be deduced that T becomes zero at the point at which
vir assumes its maximum value, and that the sign of T is
determined by that of é% (vir). Now Wattendorf (refer-

ence 17) has recently conducted tests.on a channel with
circular axis, having an elongated straight rectangular
cross section (ratio of the sides 1/18), so that the ef-
fect of the secondary flows might be assumed negligible,
and from the fall of pressure along the channel, and from
the direct measurement of the stress tangential to the
walls, deduced the diagram for T along the radius. Xarmin
remarks that from this the relations given above between

T and wvygr (fig. 3), are not confirmed. However, this
observation of Kirman and Wattendorf does not appear suf-
ficient to the writer to invalidate the assumption of
Prandtl, and therefore, indirectly, the hypothesis of con~
stant moment of velocity during the turbulent transport.



14 NeAeCo.A. Technical Memorandum No. 799

_ In fact, from the eguations of Wavier, applied to the
particular type of flow now considered, there is obtained
for the instantaneous motion:

: ' v
p roQ or r r oY
and for the mean motion *
1ap _ o, Avls v gt O '
5 ov " vip [z g7t v ] = 7'y 33 (r v'yg) (18)

which, with the assumption of Prandtl, becomes

1l 3p _ g; a .
5ae - Ve ar OV ar (vy 73 (19)

Now since for the determination of 7T, Wattendorf availed
himseclf of the relation

1 d oP
— —— 27 - =
r dr (r=7). a9

By comparing (19) with (17), it follow that the virtual
stress which gives rise to the pressure gradient is not
that which results from (16) but that given by

1 d 1 d |
T = —x ! - e dr +
r= [f TV dr [ dr Vtr)] * a]

A very remarkable observation on the theory of Prandtl
is also made by Taylor, who remarks that the theory of the
transport of the moment of momentum necessarily leads to
expression (16) for the apparent stress, arnd therefore a
rotation of the entire system as a rigid body with angular
velocity  would change the tangential stresses, increas-

ing them by an amount 2p v', 1" Q.

Taylor's theory does not prescnt this incongruence
inasmuch as the addition of a constant vorticity to the
entire fluid field does not have any effect on the trans-—
port of vorticity itself. '

8 In this respect, too, however, it seems fitting
to show how every difficulty for the determination of the
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expression for the fluctuation velocity might be overcome
not by assuming a certain transport length, and more or

“"less plausibdle hypothesis based on the law of motion of

the particles during their transfer from layer to layer,
but by applying the principle of statistical similitude
according to the concept of XKdrman mentloned above.

In the coordinates r, ® of the plane, the eguation
of the transport of the vortices becomes: '

a "0 py o =
: DY + v 5 W+ r v, 5 DY =0 (20)
where V¥ denotes the flow function of the field and D the
symbol
3,1t ., 1 &
3r® " r or | r® 397

Setting Wl the flow function of the motion corresponding

to the turbulent agitation, and denoting dy V and W,
respectively, the velocity and the mean vorticity at any
point, equation (20) may be written:

Dw’l (Vt + él‘lf‘}‘)acp ¥y -~ g‘%‘]‘ 53; (DVy +w) = 0 (21)

Let us now make the assumption that with respect to a
system of axes with origin at any point P of the field
and moving with P with the same velocity, the field of
flow in the neighborhood of P may be considered as sta-
tionary. We can then put, in the neighborhood of P

Vi
vy P
Vt = VtP + E;—‘ p (I‘ - I‘P) -—;;;‘ (I‘ bl I’P) + e

. (22)
w = wp + <%$>P (r = rp) + +o.

since we should evidently put in the second membdber of the
first of equations (22) the disturbing velocity of the
fluid element.

There results 1mmed1ate1y if, in analogy to what was
already done by Karmin for the rectilinear motion, we put
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r-rp=1r; Valr,®) = Af(r ,0)

Vg dvVy , aw
- _2F - L
!: I'P + (dr P:I (r rP) D\lfl Cp d.r>P +

oy, O oV¥: 9J _
+ ar acp D‘qfl - acp ar D\Vl =0 .
.and
av Vr 3 s ,awN of
— — e JUS, f - J —
[ dr)P rp ] 1r1 3¢ D v dr P 39 +
(23)
Al af_ o _of 9
3 [ar:L 50 P 7 39 arl Df]

If the form of the function £ which defines the
fluctuations of the velocities due to the turbulent motion
is to be independent of the particular position of the
point P, then it is necessary that

av Vs | dw A
[ E_E - — _} 1 = 1° __> =T
r P ‘ I‘P

or the characteristic length 1 Tbecomes

dvy Vi

ir

b = g (24)

while A 1is given by

s = La[ <éiz } (25)

and therefore: the amplitude of the turbulence velocity

av v
is proportional to ] (E;E - ?}> whereas Prandtl put the

amplitude of the fluctuations themselves proportional to
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Since the first expression in a rigid rotagtion is zero, it
has no effect on the amplitudes of the oscillations them~

" selves, and therefore on the expression for the virtual

tangential stress,.

9, It is interesting to compare (24) and (25) ob- .
tained by the principle of similitude of Karman from the
equation of the transport of vortices with those that may
be deduced by extending the procedure already mentioned of
Dédébant, Schereschewski, and Wehrle to the type of flow
we are now examining. .

Let us assume that the distribution functions of the
perturbed velocities at cach point of the field may be
made to become idential simply by a suitadble change in the
scale of the velocity and of the time, and let us suppose,
following the method indicated by Dédébant, Schereschewski,
and Wehrle, and moreover, the procedure used by Lorentz
(reference ‘18), and by Chapman (reference 19) in the kinet=-
ic theory of gases, that the distribution function f is
very nearly the same as that of Maxwell, so that indicate

2 2
ing the latter function by f£,, (f, = a eeb(ul ! )),

f =175y (1 +€), in which € is a small guantity of the
first order. Assuming as unit velocity at each point of
the field the mean quadratic variation o0 of the disturbed
velocity, the wvalues of fo are everywhere identical; the

values of € should therefore be the gsame. Now €, which
it should be possible to represont by a series in the com-
ponents of the disturbed velocities wu' and v' (which

we shall now assume as referred to the mean value ¢ as-
sumcd as the unit), containg the terms which define the
nonuniformity of the field; or those of tho velocity of the
gencral motion and those which Dédébant calls the "dengi-
ties." In fact, 4in order to make the statistics of the
disturbed velocities comparable, it is necessary that the
time of observation of the velocities themgelves vary from
point to point in such a manner that the number of the
fluctuations examined be everywhere equal. Now in time ¢t
the particles observed are proportional to ¢ ; resulting
in a density, if XN 1is the constant number of fluctuations
considcred proportional to N/ta. The corresponding non-
uniformity is therefore now defined by the variation of t,
The distribution function, however, is an invariant; that
i1s, it does not change in form or in value. Since £, 1is
by itself invariant, € should be the same; but the invari-
ant guantities, functions of u' and v! and of the derive
atives along the same axes of t and of the general veloc~
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ities of the components U and V ‘are functions of the
following elementary invariants: o

at , o1 at
whar Y oy

corresponding in polar coordinates and by the assumed char-
acteristics of the motion considered to v', EE, and
r

23U . 12 av . . au , av
u! ox T v oy iyt <8y T 5%

corresponding to

avy Vg
' ' ZT s
VirV'ts \dr T

There results, according to Chapman, the following ex-
pression for ¢€: : .

9 r \ar T T gr

in which A and B, on account of the homogeneity of the
formula, ¥'t.,v'y Dbeing simply numerical, should be put
proportional to ¢t and o, respectively. Since ¢ sghould
be independent of the coordinates of the point at which

thé distribution function is determined O i% = constant
. . 1l ave . Vi -

g D - = -
or is proportional to dtﬁirand t (EF—' = con
stant, or ¢t 1s proportional to — ., But EZQ -

aVs _ T ar
dr r

Ve
7 1is equal to vr@

variation of the velocity of fluctuation is

and therefore, the mean quadratic

Vrg®
T ~
0= ————=1%.4 (26)
ar Yo
where 1 1is now given by
'Yr(p
} o= - (27
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There is thus found the-property that the amplitude
of the velocity fluctuations due to the turbulent agita-
tion, is proportional to Wrw but the characteristic

length 1 does not depend, as before, on the derivative
of the rotation, dut still on the derivative of the Yrepe

This conclusion immediately makes the results of the pre-
ceding investigation more understandable: When the rota-
tion is zero at every point, as in the velocity field
which is generated in a viscous fluid abdbout a rotating
cylinder of infinite axial length, it is logical to assume
that turbulence cannot take place.

Now while (26) and (27) do not tell us anything about
this point, (24) and (25) assure us of the impossibility
of a motion having the assumed characteristics since %%-=
0 and therefore 1 = o, o '

10, The considerations just developed bring out
the difficulty of developing according to the methods of
classical mechanics any theory whatever based on the con-
cept of transport, inasmuch as the conclusions to which
they lead are intelligible only insofar as the relations,
which the introduction of the concept of mean distance 1
permit to be written down, may be interpreted by means of
the principle of similitude of the turbulent oscillations,
while a generalization of the relations themselves with-
out this check easily leads to erroneous conclusions.
Thus in the case of plane motion with rectilinear stream-
lines (4) and (6) are correct since dU/dy represents the
excess of velocity with respect to the fluild layer at
height y of the particle distance 1, as well asg.the
fluid displacement between the two contiguous layers,
while (15) leads to unintelligible results since &Vt , ¥t

dr r
is proportional to the excess of moment of momentum while
: dvg - v
the fluid displacement is given by EFE -~ ;E. On the

other hand, the reasons for such difficulties are easily
understood, for although the concept of the mixing length
is very intuitive it is not prescribed for a fluid parti-
cle which penetrates a certain layer after having trave
ersed more layers, how many of the dynamic and kinematic
characteristics that it possessed initially, it conserves
after each crossing. - g

1l. With the problem of the transport of momentum
and of vorticity is intimately connected the theory ~ re-
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markable in many respects - developed recently by G. D.
Mattioli (reference 20). The latter supposes that in tur-
bulent agitation each fluid particle maintains constant '
not only its momentum, as Prandtl assumes, but also its
rotation, as assumed by Taylor. HMattioli, who considers
the motion in tubes of circular cross section, derives the
following equations:

€r 5-) = = == r; ==

a av i dp : c1<€
dr \ dr p dx

—g—)=ar%¥ (28)

where V 1is the general velocity, € = 1® x, in which 1
has the meaning given above, while k 1is a function which
has the dimensions of a frequency and is called by Matti-
0li the "mixing frequency."

Now if Prandtl's theory is applied to this particular
type of flow, we have, using the above notation

1 dp _ i
p dx = (1

which is identical with the first of equations (28) putting
Vv = Pk A (29)

On the other hand, from the equation of Navier, which rep—
resents the motion in the direction of the tube axis, we
have:

where ®' is the instantaneous fluctuation of the vortic-
ity at any point. Therefore, according to the Taylor con=-
cept,

o -1 LY
dr2
from which
2 2
1 dp —_ 4"V 1 dp a'v
— e = gt d b 29) = = = 1°k ——s
o ax drg an v ( ) 0 ax 1 drz
or i

a a v 1 dp
G OR (20)



N.A.C.A. Technical Memorandum No. 799. ° 21

Equation (30) does not give satisfactory results, how~
ever, Taylor, as explained above, concludes therefrom -

“that‘the“theory~of“transportwofﬂveric&by~cou1d*notﬂbe~ap-"

plied in thils case except by considering the turbulent agi-
tation as it is actually, namely, three~dimensional., Mat-
tioli, whose theory is one-dimensional, insofar as the -
transport of the masses takes place only with radial tur-
bulent velocities, and the continuity of the mass itself
is restored by associating with the discontinuous turbu~
lent transport a continuous transport that is always radi-
al, does not at all consider (30) or the connections set
up by the equations of Navier, and since he shows that the
first member of (30) represents the increment of vorticity
communicated to an element of fluid, he deduces that, for
the permanence of the motion, there should be applied to
the same element a corresponding couple which he puts
£y ‘ '

t St o
equal to ar a3 |

He maintains (reference 21) that this couple is due
to the viscosity of the fluid and therefore dissipates at
each point the increment of vorticity which the turbulent
agitation produces. This interpretation is open, however,
to some reflection even if the fact that the fluid, in the
original theory, was assumed to be perfect.

The first member of the second of equations (28),
which I shall denote by A, represents the excess of vore
ticity which is to be dissipated in the time t, corre«-
sponding to the mean period of the oscillations. Now the
velocity of dissipation of the vorticity ® in a fluid of

kinematic viscosity v is given by %%-= VAW, by .
which the mean velocity %% in time t, may be put %%-=
VAD and the dissipated vorticity will be

-—QT ) —

%E '[',o = D to Aw =. A (31)

In this way it may be understood why in the second
member of (28) there does not appear the viscosity, since
putting the time t, mnecessary for the dissipation of A
proportional to 1/v seems logical, and in any case agrees
with what may be deduced in several simple cases (refer—
ence 22). Equation (31), however, would make A depend
not on the second derivative of V but on the third de-
rivative,
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Apart from the difficulty of Jjustifying the second of
equations (28) which has already been the subject of some
remarks by the author (reference 23), the theory of Matti-
oli leads to results which agree both with those obtained
experimentally and with those deduced from the theory of
Prandtl and Karmdn; in particular as regards .the logarith-
mic law for the resistance of smooth tubes as indicated
by Mattioli himself (reference 24) and the logarithmic dis-
tribution law of the velocity at the wall of the obstacle,
as may easily be deduced.

1ls The problem of the transport of momentum or vor-
ticity in turbulent flow, presents a particularly sugges-
tive aspect and is susceptible of a general solution if
the phenomenon is considered as belonging to the domain of
statistical physics and is therefore studied with thc methe
ods appropriate to the latter, 1In this connection, it
should be observed that the statistical character of the
flow is assured, not only by the irregularity of the ve~
locity fluctuations, but by the existence of universal
laws of distribution of velocity independent of any ini-
tial condition of the flow. Important progress in this
sense is represented by the theory recently developed by
H. Gebelein (reference 25),.

Gebelein assumes that in the fluid motion, the circu-
lation of the momentum, and the energy diffuse in space
according to the same law of probability that governs the
diffusion of matter in statistical phenomena; that is, in
which the motion of any particle from point to point is
not determined in an unequivocal manner, with certainty
(as in problems of deterministic mechanics), but takes
place according to a law of probability, which is a time
and space function. Under these conditions, the density
of the fluid in a space element, which is proportional to
the probability with which molecules of fluid are found
in the element considered, received in each elementary

volume an increment P + p div. ¥V, which by the continu-
dat
ity of motion should be zero, and whose analytical ex-

pression is given by the equation of Kolmogoroff:

k=3
' i=3 i=3 2
dp . P N o 3 ol
— v = 2—(uip)- & ——9— bikp)= 32
gpre v V= Se4 2 ayi(ulp) 2 ayiayk( 1kP) 'O ~(32)
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where yj now represents any of the three coordinate -axes
(¥34.95s ¥5), w3 the component in the yj ‘directlon of
the mean velocity of the motion, while bj) depends on

the mean quadratic variations of the velocity itself,

Hore precisely, let P (x,, X5, Xz, ¥y, ¥2. ¥as: t; t +A) -
be the function which defines the probability with which a
particle, which at time t is at the point whose coordi-
nates are x;, Xz, Xz will be at the point % , yz. ya3 at
time t + A, and A3 and Byy,  the moments of first and’
second order, regspectively, of P, or the mean valuesg and

the quadratic variations, respectively, of the distribu-
tion function P, that is

+oo oo oo :
Ay = f f S (r3 - %4) P dy, dy, dy,
hag'~'- -0 =0

4o Ho oo .
Biv = f f J (yi - %) (3 - =) P dy, dy, dy,
‘ - =~ - :

Aj Bik
Then uy = lim —»= Pix = lim R

m
A=0 A=0

Thug the ®quations of motion, according to the sgstatis-
tical mechanics, 4o not require a knowledge of the form of
the function P, but only of the values of the static mo-
ments and of the second order moments of P itself, pre-
cisely as in the deterministic mechanics, in which the gov-~
erning equations of motion contain only the static moments
of inertia of the mass in motion and do not require a knowl-
edge of the form of the distribution law of the mass,

According to the hypothesis given above by Gedelein,
if the mechanical characteristics are diffused by the
same law as the density, the increment of the component of
the momentum of an element. 4T in the direction. y ,

d.p'u_l_ ouy

Lt SR ——x

ai P¥1 % 53y

which, on account of the translation equilibrium along the
same axis, ig egqual to -~ ap/ayl is given by - -
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o(pu,y) 3 o . op
Tt T I gyp () - 2 ospraes (arpma) = - g

while analogous equations are obtained for the directions
yg, yau, ;

If, instead of the momentum, it is assumed that it is
the vorticity that is diffused, there is obtained:

2

A pwy) d d
______ + —_ . - ez (Dbs =
5% Z 571 (ujpwy) - 2 571 7% (bipp ®31)
d [ 9wy  buy
z V1 I:Puz o7, - pPus P )

12, The solution of the problem requires a knowledge
of the coefficients bik and this is obtained by Gebelein

by using a relation between the mean quadratic variation

of the velocity and the characteristics of the mean mo-
tion, and the expression for the "characteristic time"

T (Verweilzeit) which is a measure, so to speak, of the
s%atistic or deterministic character of the phenomenon wun-
der consideration, in the sense that the phenomenon itself
observed for an interval of time less than T, appears to
be governed by a deterministic law while observed at inter-
vals of time very large compared to T appears as a sta-

: o’
tistic phenomenon.

Gebelein assumes as a fundamental theorem, that the
mean gquadratic variation of the perturbed velocity is pro-
portional to the fourth root of the vorticity, correspond-
ing to the mean motion '

i/ZT ' (33)

but this proposition is, in fact, not demonstrated, at
least not in a convincing manner, and therefore appears
"essentially as a hypothesis to which Gebelein gives an ex-
perimental confirmation based on the tests of Nikuradse,

of 1926. Since, however, the determination of the mean
guadratic variation in these experiments 'is not made by
direct measurement, it seemed proper to the author to ver-
ify the hypothesis of Gebelein by means of the results
obtained experimentally with a hot-wire anemometer by
Reichardt and by Wattendorf in a very elongated rectangular

1]

a
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~channdi so.as to approximate as far as possible two-dimen-
31onal motion. The results which have been calculated
using the values indicated above, are shown in figure 4 in
which is also indicated by dotted line the theoretical
diagram according to the assumption of Gebelein. The ap-
proximate character of (33) is deduced by the comparison.
On the other hand, if the motion takes place with a varia-
ble pressure gradient in the direction of the motion i%t-
self between a convergent and a divergent section, (33)
does not give any indication of the eventual dissymmetry
between the mean gquadratic variations of the components

ut and v' of V, while it is known, for example, that

in the motion within a convergent ,/ ut® decreases, along
the axis of the channel, about in proportion to I, with

/==
which the mean velocity increases, while v! increases
in proportion to 1*®., In this connection, it is very
desirable that systematic tests be conducted to determine

the law of variation of the dependence of u!”  and of

N ;TE’ on the mean motion, the knowledge of which is es-
sential for any theory of turbulence.

The characteristic time T, is determined by Gebelein
after an actunal analysis of the reasons which could give
rise to a statistic phenomenon destroying the causes which
tend to produce it in a deterministic manner. The cause is
essentially the same as that leading to the production of
vortices at the contact of rigid walls which, either on
account of the roughness of the walls themselves or the
disturbances which may be produced, for example, at the
mouth of the tubes, takes place not according to a deter-
minate law but by pure chance. This is what makes the
vortices in the boundary layer, in two-dimensional motion,
have only in the mean a direction parallel to the walls
and normal to the mean motion; to this mean vorticose
layer is added a layer in which the axes of the vorticese
are disposed along any direction whatever. A comparison
of the results to which the theory leads with those ob-
tained experimentally would indicate that the axes of the
perturbed vorticese are essentially directed along the
mean motion, and this conclusion appears in singular agree-
ment with the hypothesis of Prandtl already réferred to,
namely, that the transport of particles in. bound turbu-
lence takes place by Jjust the vortlces haV1ng this dispo-
sition.
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13. The calculation of T, has been made by Gedbelein
for several wsimple cases (flow about a flat plate, within
a convergent and a divergent tube, and within a straight
tube); and some of the results obtained by him by relative-
ly simple methods, although at the price of over-simplified
assumptions, we shall now point out in what follows.

In the problem of the flow about a flat plate, the
equation of Gebelein obtained by assuming that the momen-
tum is diffused accordiag to a law of probability corre-
sponding to that of the diffusion of the mass, considering
he fluid as perfect, becomes

T 2 7
L (T )
2 2

while the diffusion of the vorticity leads to the equation

il G 2 %:—-) =0 (35)
By the assumption made on the relation between ;75

and %;j and with the expression for T, calculated by

Gebelein, we havce for the two cases, respectively:

dz (C s du‘l \ 0 (3 )
dyaz .l 2 dye l/ o]
o .
a > du1>
—= | Cy, ¥ — =0 ) (37)
dyz [ Y72 \dy, |

Equation (36) gives u (y,) =/ a + b log Y., while
from (37) is obtained

1, (y2) = a + b log vy, (38)

which is the well-known logarithmic formula confirmed by
the tests of Nikuradse, mentioned above.

Thus, it 1s the vortiéity and not the momentum which
is diffused according to the same law of probability as
that corresponding to the diffusion phenomenon of the mass.
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This conclusion may, however, be invalidated by the
assumptions which are at the base of the. calculations; in
particular, it ‘may be difficult to admit that the mean
quadratic variations of the fluctuation velocities for the

du
flow about a flat plate are proportional to / €;¥ and

therefore by (38) to y‘1/4. This even appears to be con-
trary to the principle of the constant correlation between

u! and v', which would lead, in this problem, and in
accordance with the principle of Karman, to the equation

It may, nevertheless, easily be seen that the con-
clusion stated above holds true even if equations (39)
are admitted. In faect, analogous to what is done in the
kinetic theory of gises, it is possibdble to assume

b
T, = —s==s==

[e]

2
v

if 1 has the meaning of "the mean free path¥ already
considered many times above; there is deduced

-4 - du
— 1 == =0
dy [C v v dy}

. du .
g &4 t
1 3 conétan

or

which leads to (38), as already previously derived.

14, The theory of Gebelein, developed according to
the methods of statistical mechanics, thus allows the af-
firmation of the principle of diffusion of the vorticity
in turbulent motion. This principle had been confirmed by
Taylor, but its application, using the methods of classical
mechanics, had not led to a satisfactory solution. .The
real reason for this fact appears to depend on the circuum~
stance that a .theory based on the concept of transport -
and developed according to classical mechanics, would re~
quire a knowledge of the history of the particle during
the transport, whereas statistical mechanics, observing
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the phenomenon at intervals of time for which every effect
of cause is destroyed, renders itself independent of any
knowledge of the states assumed by the particle during iks
deterministic motion.

Translation by S. Reilss,
National Adviscory Committee
for Acronautics.
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